Lecture 18: Encrypting Long Messages

Encrypting Long Messages

▲御▶ ▲理▶ ▲理▶

э

- Earlier, we saw that the length of the secret key in a one-time pad has to be at least the length of the message being encrypted
- Our objective in this lecture is to use smaller secret keys to encrypt longer messages (that is, secure against computationally bounded adversaries)

< ロ > < 同 > < 回 > < 回 > < □ > <

Recall

- Suppose $f: \{0,1\}^{2n} \to \{0,1\}^{2n}$ is a one-way permutation (OWP)
- Then, we had see that the function $G: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2n+1}$ defined by

$$G(r,x) = (r, f(x), \langle r, x \rangle)$$

is a one-bit extension PRG

- Let us represent $f^{i}(x)$ as a short-hand for $f(\cdots f(f(x))\cdots)$. $f^{0}(x)$ shall represent x.
- By iterating the construction, we observed that we could create a stream of pseudorandom bits by computing b_i(r,x) = ⟨r, fⁱ(x)⟩ (Note that, if we already have fⁱ(x) stored, then we can efficiently compute fⁱ⁺¹(x) from it)
 So, the idea is to encrypt long messages where the *i*-th bit of the message is masked with the bit b_i(r, x)

i-times

Encrypting Long Messages

- Without loss of generality, we assume that our objective is to encrypt a stream of bits (m₀, m₁, ...)
- Gen(): Return sk = $(r, x) \xleftarrow{\$} \{0, 1\}^{2n}$, where $r, x \in \{0, 1\}^n$
- Alice and Bob shall store their state variables: state_A and state_B. Initially, we have state_A = state_B = x
- $Enc_{sk,state_A}(m_i)$: $c_i = m_i \oplus \langle r, state_A \rangle$, and update $state_A = f(state_A)$, where sk = (r, x)
- $\text{Dec}_{sk,\text{state}_B}(\tilde{c}_i) = \tilde{m}_i = \tilde{c}_i \oplus \langle r, \text{state}_B \rangle$, and update $\text{state}_B = f(\text{state}_B)$, where sk = (r, x)
- Note that the *i*-th bit is encrypted with $b_i(r, x)$ and is also decrypted with $b_i(r, x)$. So, the correctness holds. This correctness guarantee holds as long as the order of the encryptions and the decryptions remain identical.
- Note that each bit b_i(r, x) is uniform and independent of all previous bits (for computationally bounded adversaries). So, the scheme is secure against all computationally bounded adversaries